[スポンサーリンク]

化学者のつぶやき

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

[スポンサーリンク]

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と不斉配位子による立体制御が鍵である。

研究の概要

有機ホウ素化合物は、多様な官能基変換が可能であるため極めて重要な合成中間体である。特に、光学純度の高い有機ホウ素化合物は医薬品等の不斉合成に有用であり、主に、金属触媒を用いたアルケンのエナンチオ選択的ヒドロホウ素化によって得ることができる(図1A)。

金属触媒を用いたアルケンのヒドロホウ素化の初の例としてNöthらは、ロジウム触媒とカテコールボランを用いると室温で反応が進行することを見いだした(図1B)[1]。また、Evansらはロジウム触媒存在下、ヒドロキシ基やアルコキシ基を配向基とする環状アルケンのエナンチオ選択的ヒドロホウ素化に成功した(図1C)[2]。それ以降、エステルやアミドを配向基としたアルケンの位置選択的かつ立体選択的ヒドロホウ素化反応が複数報告された[3, 4]

一方、著者らは以前、ロジウム触媒を用いたα,β-不飽和アミドとエナミドのエナンチオ選択的ヒドロホウ素化反応を開発した(図1D)[5, 6, 7]。しかし、二置換および三置換アルケンに限られ、四置換アルケンの位置選択的かつ立体選択的ヒドロホウ素化反応は未達成であった。これは四置換アルケンが立体反発により金属錯体を形成しにくいことと、金属ヒドリドによるアルケンの異性化の抑制が難しいことに起因する。

本研究で著者らは、ロジウム触媒と柔軟かつコンパクトなキラル配位子を用いることで、これまで達成されていない四置換アルケンの位置選択的かつ立体選択的ヒドロホウ素化反応を開発に成功した (図1D)[8]。四置換アルケンの官能基化反応としては極めて温和な条件で反応が進行する。

図1. (A) 有機ホウ素化合物を中間体とする不斉合成、(B) 触媒的ヒドロホウ素化、(C) 配向基を利用した不斉ヒドロホウ素化反応、 (D) 著者らの先行研究、(E) 本研究

 

“Rhodium-Catalyzed Highly Enantioselective Hydroboration of Acyclic Tetrasubstituted Alkenes Directed by an Amide” 

Hou-Xiang Lu, Cheng Wang, Tao-Tao Gao, En-Ze Lin, Shou-Lin Lu, Xin Hong, and Bi-Jie Li J. Am. Chem. Soc. 2024, 146, 16194−16202. DOI: 10.1021/jacs.4c04108

論文著者の紹介

研究者 : Bi-Jie Li

研究者の経歴 :

2007                    B.Sc., Peking University, China (Prof. Zhang-Jie Shi)

2012                    Ph.D., Peking University, China (Prof. Zhang-Jie Shi)

2012–2015    Postdoc, University of California-Berkeley, USA (Prof. John F. Hartwig) 

2015–              Associate Professor, Center of Basic Molecular Science (CBMS), Tsinghua University, China.

研究内容: 不斉触媒を用いたアルケンと芳香族化合物の官能基化反応の開発

論文の概要

まず、著者らは配位子を検討した(図2A)。L1L2をはじめとする多くのホスフィン配位子を用いると主にアルケンの水素化体2a’が生成した。それに対し、Josiphos配位子(L3)を用いた際にはヒドロホウ素化が優先し、所望の2aを選択的に与えた。さらに、L3のリン上の置換基を検討した結果、L4を配位子とすることで、高い選択性と収率で2aが得られることがわかった。

次に、基質適用範囲を調査した(図2B)。その結果、N-アルキル、N-アリールアミドを有する種々の四置換アルケンで高いエナンチオ選択性を示した。さらに、アミドの窒素上またはγ位にヘテロアレーン、エステル、不斉中心、ハロゲン、およびアルケンが存在しても選択性や収率に大きく影響しなかった。一方で、アミドのα位とβ位の置換基がメチル基より大きい場合は選択性と収率が大きく低下した。また、本反応はアミドの他、エナミドにも適用可能であった。エナミドを本反応条件に付すとα位にホウ素が付加する。これはアミドを有する四置換アルケンと同様にカルボニルを含む五員環ローダサイクル中間体を経由するためである。

続いて、著者らは本反応のエナンチオ選択性が発現する段階をDFT計算によって推定した。本反応、HBpinとα,β-不飽和アミドの配位子交換 (I)、二価のロジウムに対するHBpinの酸化的付加(II)、アルケンの配位挿入(III)、還元的脱離(IV)を経て進行すると考えられる(図2C)。計算の結果、(Ⅲ)の段階において生じる金属アルケン錯体のうち立体反発の最も小さいlnt-4を経由し、位置選択性が生じる。また、(Ⅳ)の段階では、Bpinと配位子L4間の立体反発と分子内水素結合により遷移状態(TS-1)の立体が一意的に定まることでエナンチオ選択性が発現する。

図2. (A) 配位子の検討、(B) 基質適用範囲、(C) 推定反応機構

 

以上、還元されやすく、異性化も考慮する必要がなく、配向基として働くa,b不飽和アミドとエナミドに限定されるが、四置換アルケンの位置選択的かつ立体選択的ヒドロホウ素化反応の開発に成功した。今後、より広範な四置換アルケンのヒドロホウ素化反応の開発に期待したい。

参考文献

  1. Männig, D.; Nöth, H. Catalytic Hydroboration with Rhodium Complexes.  Angew,. Chem., Int. Ed. 198524, 878–879. DOI: 10.1002/anie.198508781
  2. Evans, D. A.; Fu, G. C.; Hoveyda, A. H. Rhodium(I)-Catalyzed Hydroboration of Olefins. The Documentation of Regio- and Stereochemical Control in Cyclic and Acyclic Systems.  J. Am. Chem. Soc.1988110, 6917–6918. DOI: 10.1021/ja00228a068
  3. Rubina, M.; Rubin, M.; Gevorgyan, V. Catalytic Enantioselective Hydroboration of Cyclopropenes.  J. Am. Chem. Soc.2003125, 7198–7199. DOI: 10.1021/ja034210y.
  4. Smith, S. M.; Takacs, J. M. Amide-Directed Catalytic Asymmetric Hydroboration of Trisubstituted Alkenes.  J. Am. Chem. Soc.2010132, 1740–1741. DOI: 10.1021/ja908257x
  5. Gao, T.-T.; Zhang, W.-W.; Sun, X.; Lu, H.-X.; Li, B.-J. Stereodivergent Synthesis through Catalytic Asymmetric Reversed Hydroboration.  J. Am. Chem. Soc.2019141, 4670–4677. DOI: 10.1021/jacs.8b13520
  6. Bai, X.-Y.; Zhao, W.; Sun, X.; Li, B.-J. Rhodium-Catalyzed Regiodivergent and Enantioselective Hydroboration of Enamides.  J. Am. Chem. Soc.2019141, 19870–19878. DOI: 10.1021/jacs.9b10578
  7. Gao, T.-T.; Lu, H.-X.; Gao, P.-C.; Li, B.-J. Enantioselective Synthesis of Tertiary Boronic Esters through Catalytic Asymmetric Reversed Hydroboration.  Chem, Commun.202112, 3776. DOI: 10.1038/s41467-021-24012-z
  8. Geier, S. J.; Vogels, C. M.; Melanson, J. A.; Westcott, S. A. The Transition Metal-Catalysed Hydroboration Reaction.  Chem. Soc. Rev.202251, 8877–8922. DOI: 10.1039/D2CS00344A
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【PR】Chem-Stationで記事を書いてみませんか?【スタ…
  2. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  3. 材料開発における生成AIの活用方法
  4. 日本薬学会第144年会付設展示会ケムステキャンペーン
  5. 韮山反射炉に行ってみた
  6. 2007年度ノーベル化学賞を予想!(4)
  7. Newton別冊「注目のスーパーマテリアル」が熱い!
  8. タミフルの効果

注目情報

ピックアップ記事

  1. イヴ・ショーヴァン Yves Chauvin
  2. 『分子標的』に期待
  3. 沼田 圭司 Keiji Numata
  4. 光熱変換材料を使った自己修復ポリマーの車体コーティングへの活用
  5. とある化学者の海外研究生活:アメリカ就職編
  6. 【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!
  7. ジャスティン・デュボア Justin du Bois
  8. アカデミア有機化学研究でのクラウドファンディングが登場!
  9. 2021年化学企業トップの年頭所感を読み解く
  10. 第2回エクソソーム学術セミナー 主催:同仁化学研究所

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP